2D geometric model - определение. Что такое 2D geometric model
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое 2D geometric model - определение


2D geometric model         
GEOMETRIC MODEL OF AN OBJECT AS A TWO-DIMENSIONAL FIGURE, USUALLY ON THE EUCLIDEAN OR CARTESIAN PLANE
2D geometric models; 2D model; 2D geometric modeling
A 2D geometric model is a geometric model of an object as a two-dimensional figure, usually on the Euclidean or Cartesian plane.
Geometric art         
  • ekphora]]'', the act of carrying a body to its grave. National Archaeological Museum, Athens
PHASE OF GREEK ART CHARACTERIZED BY GEOMETRIC MOTIFS IN VASE PAINTING, FL. CA. 900–700 BCE, CENTRED IN ATHENS AND SPREAD AMONG AEGEAN TRADING CITIES
The Geometric Period; Geometric Greek art; Geometric Style; Geometric style; Geometric Period; Geometrical period; Geometric pottery; Geometric Art; Geometric vase painting; Geometric period; Geometric periods; Middle Geometrical
Geometric art is a phase of Greek art, characterized largely by geometric motifs in vase painting, that flourished towards the end of the Greek Dark Ages, . Its center was in Athens, and from there the style spread among the trading cities of the Aegean.
Two-dimensional filter         
  • Representation for the filter with the system function <math>H(z_1,z_2)</math>. Adapted from [3].
TYPE OF FILTERS
2D Filters
Two dimensional filters have seen substantial development effort due to their importance and high applicability across several domains. In the 2-D case the situation is quite different from the 1-D case, because the multi-dimensional polynomials cannot in general be factored.